
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Attribute-Value Based Domain-Specific Indexing
Technique for Hidden Web

Arnika Jain

 Abstract— The Hidden Web is the content on the Web that is not accessible through a search on general search engines. The data

retrieved through hidden web is structured and the indexing techniques used to index the unstructured data are of no use in the case of

structured data. Index structures for the hidden web differ in two fundamental respects from traditional inverted list index structures used by

current web search engines. First, index structures for the hidden web have to deal with structured data because the underlying database

is typically richly structured and typed; this is in contrast to the mostly unstructured HTML data available off the surface web. Second, index

structures for the hidden web must deal with data volumes that are orders of magnitude larger than that for the surface web. To address

these issues, This Paper proposes an index structures for the deep web. This index structure understands the structure of the underlying

data. The index structures can also be heavily compressed so that their space requirements are far less than the size of the original index.

But the main problem is how to index the data retrieved through hidden web. This Paper also proposes an indexing technique for the same

where data is indexed without having duplicates. This Paper also proposes a Data Extraction Architecture to extract the data of user’s

interest of a specific domain.

 Index Terms— Crawler, Deep Net, Hidden Web, Search engine, Surface Web, Query Interface, WWW

——————————  ——————————

1 INTRODUCTION

 HE Hidden Web [1] refers to World Wide Web content

that that is not part of the Surface Web, which is indexed by

standard Search Engines. Hidden Web is also called as Deep

Web, Deep Net, Invisible Web, or the Undernet. It describes

the portion of the World Wide Web that is not visible to the

public or has not been indexed by the search engines.

Surfacing the Deep Web poses several challenges. First, the

goal is to index the content behind many millions of HTML

forms that span many languages and hundreds of domains.

This necessitates an approach that is completely automatic,

highly scalable, and very efficient. Second, a large number of

forms have text inputs and require valid input values to be

submitted. Since the data retrieved through Hidden web is

structured and in bulk, so there is need of an efficient

indexing technique to index that data. This paper introduces

such an indexing technique and the data extraction

architecture that extracts the data corresponding to different

users based on their respective requirements specific to a

particular domain.

This paper has been organized as follows: Section 2 describes

the related work done so far in the area of hidden web data

extraction. Section 3 describes the proposed work i.e.

Architecture for Data Extraction and a method to extract

hidden web data in integrated form corresponding to

different user’s requirements. Section 4 draws the conclusion.

2 RELATED WORK

This section discusses the work that has been done regarding

the hidden web.

Anuradha and A. K. Sharma [2] introduced a Search Query

Interface which is considered as an entrance to the websites

that are powered by backend databases. Users can find the

desired information by submitting the queries to these

interfaces. These queries are constructed as SQL queries to

fetch data from hidden sources and send it back to users with

desired results.

 Bhatia [3] proposed a Domain–Specific Hidden Web

Crawler that automated the process of downloading of search

interfaces, finding the semantic mappings, merging them and

filling the Unified Search Interface produced thereof has been

designed that finally submits the form to obtain the response

pages from Hidden Web.

Anuradha and A. K. Sharma [4] proposed a novel method

which extracts the individual data units from table data using

DOM tree structure of the web page. After collecting data

from each table of website, a large repository has been

maintained which contains data from various Hidden web

 Arnika Jain is currently working as Assistant Professor in Department of
Computer Science & Engineering at SRM University, NCR Campus,
Modinagar, India. She has 8 years of Teaching Experience. She has received
Degree in Master of Technology (Gold Medalist) from Shobhit University,
Meerut, India in 2011 and Master of Computer Applications (Gold
Medalist) from Gurukula Kangri Vishwavidyalaya, Hardwar
(Uttarakhand), India, in 2004. Her Research Areas are MANET, Hidden
Web, and Network Security. email: jain.arnika2009@gmail.com

T

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Surface_Web
http://en.wikipedia.org/wiki/Index_%28search_engine%29
http://en.wikipedia.org/wiki/Search_engine
mailto:jain.arnika2009@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

sources of same domain and this repository is used for later

searching.

Anuradha and A. K. Sharma [5] detected the domain

specific search interfaces considering the domain word in the

URLs, then title and after that attributes of the source code.

Feature space model classified the web pages into a set of

categories using domain ontology. The large-scale collections

of query interfaces of the same domain are then integrated

into integrated search interface.

Jian Qiu, Feng Shao, Misha Zatsman, Jayavel

Shanmugasundaram [6] presented some index structures for

querying the hidden web.

HiddenSeek [7] used a keyword based indexing and

searching technique for single-attribute hidden web sites. This

approach uses the inverted index for indexing and searching

method the hidden web data. HiddenSeek takes a term

frequency of keyword as a factor for ranking the results i.e,

whether the keyword appears in the URL of a page.

Xiang Peisu [8] proposed model of forms and form filling

process that concisely captures the actions that the crawler

must perform to successfully extract Hidden Web contents. . It

described the architecture of the deep web crawler and

described strategies for building (domain, list of values) pairs.

So, the retrieval of data from hidden web considers only

single attribute and these technique are inefficient for storing

the multi-attribute based hidden web data respective to a

number of domains. So, there is a need to design a general

query interface that can take the query corresponding to any

domain and search the data of the user’s interest. This paper

proposes architecture for the data extraction in Hidden web

and also defines the various types of queries that can be

processed in a uniform search query interface.

3 PROPOSED WORK

Since the hidden web is the biggest source for structured data

and is not publicly indexed yet, accessing the same is a

challenging task especially when the pages are created

dynamically through search interfaces. The problem is how to

design an interface for hidden web that can take query

respective to any domain and return the result corresponding

to that domain only. This Paper proposes the solution to it.

First task is to read the files containing the data of hidden web

that is in structured form of various different domains and to

index this data. Then a search query interface is designed that

can take the query regarding any domain and return the data

specific to that domain only.
3.1 System Architecture for Data Extraction

Several online databases provide dynamic query-based data

access through their query interfaces, instead of static URL

links. This Query interface is considered as an entrance to

Hidden Web, as the tremendous amount of information is

hidden behind these search forms in web pages and

traditional crawler cannot replicate the query submission

carried out by human beings. A Web search interface for e-

commerce typically contains some HTML form control

elements such as textbox i.e. a single line text input, radio

button, checkbox and selection list i.e. a pull-down menu that

allow a user to enter search information.

A Search interface would provide uniform access to the

data sources of a given domain of interest. Here, a Query is

considered which contains some terms and it should not be

blank. The User enters the query in the text box of the Search

Query interface which is then accessed by Query Processor.

The two main steps done by Query Processor are extracting

the Query String and then tokenizing it. The Tokens are then

matched with the attribute values stored in the repository to

retrieve the posting lists. These lists are then intersected by the

query processor to return the result to the user with the help

of a Result Page. This architecture is shown in Fig 1.

 Query Processor

Fig 1. Architecture for Data Extraction

There are mainly five components of the Proposed

Architecture of Data Extraction as shown below:

Query Interface: A Query Interface is designed as an entrance

to the Project which is used by the user to enter the query. It is

Data Repository

with Inverted

Index

Query

Interface

Result
Page

Attribute-value based
Searcher

Data Repository with

Inverted Index

Attribute-value
based

Tokenization

Extract Query
String

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

the user interface where the user has to input the query to get

the required data. This interface contains a Text Box where the

user has to place the query. User need not specify the

particular domain explicitly; it should be put as a part of the

query like “Flight from Delhi to Bombay”. In this particular

query, the domain is itself a part of the query.

Result Page: After the query has been processed by the query

processor and the Attribute-value based Searcher, the

required data is returned to the user in the form of result page.

Query Processor: The user queries are processed by the Query

Processor to fetch the desired data and return it back to the

user with desired results. It has the following two

components:

1. Extract Query String: The Extract Query String module of

the Query Processor extracts the Query String from the Query

Interface and passes it to the Attribute-value based

Tokenization module.

2. Attribute-value based Tokenization: It tokenizes the Query

string into a number of tokens. It then identifies the Domain

of the query by analyzing its first token and passes the various

tokens to the Attribute-value based Searcher for searching.

Attribute-value based Searcher: Attribute-value based

Searcher matches the tokens respective to the domain with the

various attribute and their corresponding values stored in the

Data Repository to retrieve the postings lists which are then

intersected to return the result page to the user.

Data Repository with Inverted Index: The Data Repository

stores the various postings lists of the attribute values along

with the attributes and their respective domain.

The Search interface allows a user to search some set of

items without altering them. The user enters a query by

typing to get the data of interest. Result Page is a page

containing data of interest. This Paper implements attribute-

value based domain-specific indexing technique for hidden

web.

This Paper presents the index structure of hidden web for

two domains: Airline and Book. It takes the files corresponding

to different domains where each domain is described with the

help of some attributes. Each file is treated as a Text

Document and is assigned a unique docID as soon as its file

path is added to the xml file. The data of these Files is

arranged in such a way that the first line of the file represents

the domain to which the file belongs and the next line

contains the various attribute names of the respective domain

and the rest of the file constitutes the various values of these

attributes. One file corresponding to Airline domain is shown

in Fig 2 and another corresponding to Book domain is shown

in Fig 3. Any number of files can be indexed but the file which

is to be index, its path is just added to the xml file.

Airline
Name Departure City ArrivalCity Time1 Time2
KingFisher Delhi Bombay 09:30AM 11:30 AM

Indigo Jammu Kargil 03:50PM 05:00 PM
JetAirways Bangalore Kerala 01:15PM 02:30PM

Fig 2. A File corresponding to Airline Domain

Book

Title Author Volume Price
 OS Galvin Third $12

Database Navathe Fourth $15
Architecture KaiHwang Second $17
C Programming Kanetkar Second $18

Fig 3. A File corresponding to Book Domain

There can be a number of Synonyms corresponding to each

domain and corresponding to attribute names. The synonyms

for Airline Domain are Flight and Airways. The Attributes

corresponding to a file of Airline domain are Name

representing the Flight Name, DepartureCity representing the

City from where the Flight departs (Synonyms: Leaving From,

From City), ArrivalCity representing the City to where the

Flight arrives (Synonyms: Coming At, To City), Time1

representing the Time of Departure of Flight from Departure

city and Time2 representing the Time of Arrival of Flight to

Arrival city. Likewise, the synonyms for Book Domain are

Publications and Papers. The Attributes corresponding to a

file of Book domain are Title, Author, Volume and Price. The file

can contain any synonym for domain and their corresponding

attribute names.

This paper extracts the data from these files and organizes

it domain wise where the content of first line specifies the

domain. Then the various attributes of the corresponding

domain are arranged in next line. Then the data

corresponding to different attributes commences. The various

extracted values of the attributes from files are organized

corresponding to their attribute names and are mapped onto

the document frequency and the Inverted Index is

implemented for the values of these attributes which is

mapped upon the respective docIDs which contains that

attribute value.

As a view of hierarchy, the Root of the tree represents the

Keyword Domain. The various domain names are represented

as internal nodes and as the child of this root node, which is

the second level. The next level of the tree represents the

various attribute names domain wise and the values of these

attribute names are arranged at the next level. Then an

inverted index is created for these values where the various

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

values constitutes the Dictionary and each term of Dictionary

has pointed to the Document Frequency which defines the

number of documents containing this term and a pointer to

the respective Document IDs. The hierarchy of this project is

shown in Fig 4.

Domain

Airline Book
 (Flight, Airways) (Publications, Papers)

Name Arrival Time1 Time2 Title Author Volume Price
 City

 Departure
 City

 v1 v2 v3 - - - - - - vn

Doc Frequency DocI DocId - - - - - - -- DocId

Fig 4. Index Structure for Airline and Book domain

The goal of this paper is to extract the data from various

hidden web databases and this data in integrated form will be

stored in large repository. Search Query Interface is

considered as an entrance to the websites that are powered by

backend databases. User can find the desired information by

submitting the queries to this interface. These queries fetch the

data from hidden sources and send it back to user with

desired results.

Type of Queries:

There can be various types of queries that the user enters in

searchQueryForm and some of them are described below:

Type 1: Query containing the domain name and the values of

the attributes.

If User enters a Query containing the domain name and the

values of the attributes then the query processor processes it

in the following steps:

1. The Query processor will tokenize the query into

tokens which includes the rejection of all the stop

words.

2. Then the first token of the query is used to identify the

domain and the remaining terms are searched in the

values of the attribute names of that particular domain.

3. If the tokens match then the respective posting list are

retrieved and intersected to return the docIDs in result.

4. The resultant docIDs represents the files that contain

the data corresponding to the given query.

Example 1. Query: “Flight from Delhi to Bombay”

 Stop words Stop words

 Flight from Delhi to Bombay

 Domain Departure Arrival

 City City

Steps:

1. The Query processor will tokenize the query into

tokens neglecting all the stop words and the first token

of the query will identify the Airline domain.

2. The second term will be searched in the values of the

Departure City attribute.

3. If it does not match then a blank Posting List is returned

corresponding to given Departure City.

4. If it matches then the respective posting list is returned.

5. Likewise the third term will be searched in the values of

the Arrival City attribute.

6. If it does not match then a blank Posting List is returned

corresponding to given Arrival City.

7. If it matches then the respective posting list is returned.

8. Finally, both the Posting Lists are intersected to return

the docIDs of the files that contain a Flight for the given

Departure City and Arrival City in Query as a result.

Example 2. Query: “Airways from Jammu to Kargil”

 Stop words

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

 Airways from Jammu to Kargil

 Domain Departure Arrival

 City City

Now, since Airways and Flight are synonyms of each other.

Writing the query as Airways from Jammu to Kargil also runs

in the same way.

Type 2: Query containing a single term

If User enters a Single Query Term in the query field then the

query processor processes it in the following steps:

1. It first analyses the Query term to check whether it is

some Domain name or not.

2. If yes, then it returns the various attribute names of that

domain, attribute values and their corresponding

postings lists.

3. If not, then query processor will check it against the

various attribute names of all the domains to find

whether it matches with any of them or not.

4. If it matches any of the attribute names then the various

values corresponding to that attribute name and their

respective posting lists are returned to user as result.

5. If it does not match then the query processor will check

it against all the values of all the attribute names

regardless of domain.

6. If it matches with any of the value of attribute name

then the query processor will return the corresponding

posting list of that particular value else it will return

NULL.

Example 1. Query: “Flight”

The above query will return the list of all the flights along

with the document frequency and the corresponding postings

list.

Example 2. Query: “book”

The above query having a single term “book” returns the list

of all the books along with their document frequency and the

corresponding postings list.

Example 3. Query: “name”

The above query does not match with any of the domain; the

query processor will check it against the various attribute

names irrespective of the domain. Then all the flight names

are returned along with their document frequency and the

corresponding postings list.

Example 4. Query: “title”

The above query also does not match with any of the domain

so the query processor will check it against the various

attribute names irrespective of the domain. Then the titles of

all the books are returned along with their document

frequency and the corresponding postings list.

Example 5. Query: “author”

Since the above query does not match with any of the domain

so the query processor will check it against the various

attribute names irrespective of the domain. Then all the

author names are returned along with their document

frequency and the corresponding postings list.

Example 6. Query: “Indigo”

Since the above query term does not match with any of the

domain, even not with any of the attribute name, so it will be

searched among all the attribute values. As it matches with

one of the flight name so it will return the document

frequency of “Indigo” along with its postings list.

Example 7. Query: “OS”

The above query term is matched with the various domains,

as it does not match with any of them then it is matched with

all the attribute names. As no attribute with this name exists

so it will be searched among all the attribute values. As it

matches with one of the book title so it will return the

document frequency of “OS” along with its postings list.

Example 8. Query: “Navathe”

Since the above query contains only one term which is neither

any domain nor any attribute name but a value of Author

attribute. So, it will return the document frequency of

“Navathe” along with its postings list.

Type 3: Blank Query

If User does not enter a Single Query Term in the query field

then it will not extract anything in the result but a message

will be prompted to say “Please enter the Query”.

4 CONCLUSION

The hidden web is not really hidden, but because searchable

databases are not indexable or queryable by todays search

engines, so they appear hidden to the average Internet user. In

this paper information retrieval architecture for hidden web

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

has been proposed that can help users to find the desired

information in integrated form. A Data Repository with

inverted Index is formed for the data extracted from various

files corresponding to different domains. In addition to this,

duplicate index was also removed from repository and this

repository is prepared for user search. In this Paper, when

user fills the Search Query Interface form for searching, these

queries are processed by the Query Processor to fetch the

desired data and return it back to the user with desired

results. The Query Processor extracts the Query String from

the Query Interface and then it tokenizes this string into a

number of tokens. It then identifies the Domain of the query

by analyzing its first token and matches the remaining tokens

with the various attribute values stored in the Data Repository

to retrieve the postings lists which are then intersected to

return the result page to the user. Hence, the user’s effort is

minimized by just entering a query into search query interface

to get the desired data.

Building a User-Friendly functionality is an evolution process.

There are always features and functionalities that can be

improved, to provide users with more ease of use and better

output. Besides improving the effectiveness of the current

solutions, the future work can be the study of how to transfer

the techniques implemented here to other contexts, such as

mining the extensive bioinformatics literature to help match

schemas of data sources in that domain, and mining text

documents that accompany real-world database schemas for

further metadata information. This project can also be

expanded through adding multiple domain and their

corresponding sub domains. Along with modification in

implementation, new algorithms for better understanding and

quick results of multiphase dynamic queries can be

introduced.

REFERENCES

[1] http://en.wikipedia.org/wiki/Invisible_Web.

[2] Anuradha, A.K.Sharma, “A Novel Technique for Data

Extraction from Hidden Web Databases”. International

Journal of Computer Applications (0975 – 8887), Volume

15– No.4, February 2011.

[3] Komal Kumar Bhatia, A.K.Sharma, “A Framework for an

Extensible Domain-specific Hidden Web Crawler (DSHWC)”,

communicated to IEEE TKDE Journal Dec 2008.

[4] Anuradha, A.K.Sharma, “Hidden Web Data Extraction

Using Dynamic Rule Generation”. International Journal on

Computer Science and Engineering (IJCSE).

[5] Anuradha, A.K.Sharma, “A Novel Approach for Automatic

Detection and Unification of Web Search Query Interfaces

using Domain Ontology”. International Journal of

Information Technology and knowledge

management(IJITKM), August 2009.

[6] Jian Qiu, Feng Shao, Misha Zatsman, Jayavel

Shanmugasundaram, “Index Structures for Querying the

Deep Web”. Workshop on the Web and Databases

(WebDB), 2003, 79-86.

[7] Ntoulas, A., Zerfos, P., Cho, J, “Textual Hidden Web Content

Through Keyword Queries”, In Proceedings of the 5th

ACM/IEEE Joint Conference on Digital Libraries (JCDL05).

2005.

[8] Brian E. Brewington and George Cybenko. “How dynamic

is the web.” In Proceedings of the Ninth International

World-Wide Web Conference, Amsterdam, Netherlands,

May 2000.

http://en.wikipedia.org/wiki/Invisible_Web

